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Abstract

An implicit finite volume high resolution scheme is
applied for predicting three-dimensional, inviscid
flow field over several launch vehicles includingthe
National Launch System (NLS), the Single-Stage-
To-Orbit (SSTO) lifting bodies, and wing-body
vehicles. Simulations about NLS configurations
were used to help benchmark Computational Fluid
Dynamics (CFD) capabilities at NASA/MSFC.
Likewise, simulations about SSTO were used to
provide aerodynamic data to structure group to
calculate structural wing loading for preliminary
conceptual designs.

I_roduction

External flow computations have been conducted
on several launch vehicle configurations. Among
those selected for the study, the early heavy lift
launch vehicle (EHLLV) is of primary interest. The
second phase of the study is to support the
advanced transportation technology program
which takes place at Marshall Space Flight Center
(MSFC) during the access-to-space study. The
subsonic lift coefficients are calculated to
determine at what speed and angle-of-attack a
proposed lifting body will be able to land at, having
structural and mission profile implications.

The grids are generated using a general purpose
1-)interactive grid generation system( . In most cases

the computational mesh is formed using an
appropriate algebraic method. The idea of using
algebraic grid system is to preserve the grid
clustering near the surface. Elliptic grid generation
is only used to smooth out certain regions where
the grids are skewed. A full three-dimensional (3-D)
body with attached components, such as boosters,

wings, or winglets is also considered. In most cases
the grids are generated in a single block and
subsequently decomposed into several domains.
In some cases the domain decomposition
procedure helps ease the grid generation steps
and keep the grid quality at an acceptable level.

The flow solver is based on an implicit finite volume
implementation of Roe's approximate Riemann
solver with higher order corrections as put forth by
Osher and Chakravarthy(2) and implemented by
Whitfield, for solving the unsteady, 3-D Euler and
Navier-Stokes equations. The code has been
applied to numerous practical problems including
airfoil, wing and full aircraft simulations(3,4). The
numerical solutions obtained in the current study
will be compared against those of Ames Research
Center and test data from MSFC wind tunnel.

Numeric_lM_hod

Arabshahi's(5) multi-block implementation of Roe
upwind EuledReynolds-averaged Navier-Stokes
solver developed by Whitfield(4), and others at the
Mississippi State University was applied to perform
the simulations presented herein. This code, and
other variants of the basic algorithm, has been
used to successfully simulate numerous complex
aerodynamic configurations. A brief description of
the applied algorithm follows. A complete descrip-
tion of the theory, development and solver imple-
mentation is available in the cited references. Since
all of the simulations presented herein are inviscid,
viscous terms will be omitted in the following algo-
rithm description.

For inviscid simulations, the code is used to solve
the unsteady Euler equations in strong conserva-
tion form as
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(1)

where the dependent variable vector, q, and the
inviscid flux vectors, F, G and H, are as presented
in numerous references(e.g • 4,5,6). Cell-centered
finite-volume discretization is applied to (1) yielding
the semi-discrete form

_¢i (SiF + 8jG + _kH )_'c = " (2)

where the curvilinear grid spacing is taken as unity
and the difference operator, 8, is defined as, for
example

8i(F) = Fi+½" Fi.½ (3)

Roe's approximate Riemann solver(e) is used to
calculate the cell interface fluxes in (2). Following
Whitfield(4) the Roe flux calculation across a cell
face is expressed as a function of the left interface
flux and the eigensystem of the so-called "Roe"
matrix. For example, consideringthe flux across a
constant face, the first-order flux is given by

F'+I= Fi + A"/q'+l" q i-½1 (4)

where

_,-= TA-T -1

efficiency(4). To develop the implicit algorithm, the
residual vector R is split according to

Rn+l--_i(F++F') n+l+_j(G++G') n+l+_'I++H') r'l (6)

Linearization of the above spit-fluxes, results in the
following definitions for the split-flux Jacobians:

(Ad')=_-'_'l n, (B_')=_'_/n, (C_')=_'/n (7)

Using these relations, and applying Euler time-
integration to (2) yields (11)

[I + ArM n] Aqn =. AtR n (8)

where

M=(SiA ++Sja ++Skc+)+(SiA'+_jB'+Skc-).

=M+.M"

The "dot" appearing after each split-flux Jacobian
indicates that the difference operator includes the
matrix-vector multiply. Dividing by At, expanding
the difference operators, and regrouping terms
yields

DpAq;- MI_.I &q;-1 + MI_+I z_ql_-l='Rp (10)

I M+_
(5) D =_-¥ + M"

-I
T and T denote the matrices formed from the

right and left eigenvectors, respectively, and A
denotes the non-positive eigenvalues of the local
"Roe" matrix. Higher order spatial accuracy is
obtained by adding a corrective flux as proposed
by Osher and Chakravarthy(7).

Although the right-and-side is formed using flux-
difference splitting, the applied implicit operator is
developed based upon Steger-Warming(s) flux
vector splitting theory. This does not provide a
consistent linearization of the residual; however, it
has been demonstrated that it does produce a
more easily implemented algorithm while
maintaining robustness and computational

at each cell, p, where the index p represents the
point in three-dimensional computational space
corresponding to the point (i,j,k). Subscript p+l
correspond to points (i+1 ,j,k), (i,j+l ,k) and (i,j,k+l).
Analogous convention is used for the subscript
p-1.

Examining (10) it is apparent that the assembled
linearized system is composed of a block diagonal
(D), a lower block triangular (L), and an upper block
triangular (U) matrix. The system resulting from ap-
plying (10) at each cell is expressed as

(L + D +U)AQ = - R (11)

This linear system is solved by applying one
symmetric Gauss-Seidel sweep as
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(D + L)zlq(1)= - R

(D + U)zlq(2)= - R - LAq(1)

(12)

This particular algorithm has been referred to as the
modified two-pass algorithm and is one of a series
of similar algorithms developed during the past
decade by Whitfield, et. al. (e.g.4,5,6).

Results

National Launch Systems (NLS_ Vehicle :
An extensive bench-marking study is conducted
using the NLS vehicle as a test case to establish
confidence in CFD simulationcapabilities, at MSFC,
for this class of flows. The surface grid is generated
from the drawings that were used for fabricating the
1/10-scale model tested at MSFC wind tunnel
facility. The vehicle consists of a cylindrical/oval
payload core with a biconic nose cone. The
interstage section connects the payload section to
an external tank. Two propulsion modules are
attached at the aft body. Two configurations,
namely Heavy-Lift Launch Vehicle (HLLV) and
Early Heavy-Lift Launch Vehicle (EHLLV), are
defined by different rotation of oval section of the
payload core (Figures 1-2).

The grid generation process was done by
application of the GENIE grid generation tool as
developed by Soni(1). Initially a C-type, single-
block, volume mesh of 279,292 grid points is
generated. It is preferred that the volume mesh is
decomposed into several blocks in order to take
advantage of the solid-stage storage device (SSD)
availability on the CRAY-YMP; the biggest block
then determines the memory size required during
the flow computation process. For this example,
the volume mesh is decomposed into 3 blocks;
one for each of the boosters and one covering the
core body.

The previously described Euler solver was used to
calculate flow past the EHLLV at a Mach number of
1.46 and 6 degrees angle of attack (AOA). Figure 3
shows the Mach contours over the EHLLV, as
predicted by UBI. These solutions are in good
agreement with the numerical solutions presented
in an unpublished report by Thomas Wey and Fred
Martin at NASNJSC, using the OVERFLOW code
developed at NASA-Ames Research Center

(Figure 4). OVERFLOW is a combination of ARC3D
and F3D, both of which had been used widely at
ARC and JSC for external flow computations of the
space shuttle vehicle. The code is capable of
solving problems with overlapped grids(1°,11).
Although OVERFLOW solutions are viscous, as
opposed to the inviscid solutions obtained by UBI,
the general trends predicted by the two codes are
similar. However, since the two codes are using
two different grid systems, some differences may
be due to the grid density.

A second simulation was made at a freestream
Mach number at 1.05 and 6 degrees AOA. This
configuration was also tested at this operating
condition at MSFC with net body force data
recorded. Figure 5 represents the calculated
distributed force coefficients compared with the
measured force coefficients. In this Figure, at each
station lengthwise, the force coefficient is
integrated circumferentlally around the half body to
yield a single point which represents the total value
at that station.

Using the same configuration, the flow fields
ranging from transonic to high supersonic are
simulated. The solutions are compared to the
shadowgraphs taken during the experiment.
Similar trends can be found between the flow
patterns predicted by UBI and those from the
shadowgraphs (Figures 6-17). On the numerical
perspective, at a lower Mach number range, the
bow shock standing in front of the nose is more
detached and the expansion waves seem more
severe at the base of the payload mid-section. At a
higher Mach number range, the flow field gets
compressed and the compression waves become
more defined. This phenomenon, in general, can
be seen in the shadowgraph whereas the picture
becomes clearer at high supersonic flow since the
flow field becomes denser. Furthermore, the flow
angles over the compression and expansion
corners are in good agreement between the
simulation and the experiment.

Sinqle-Staae-To-Orbit (SSTO) ADDlications:
The objective of this study is to provide surface
pressure distributions which can be used for
loading analysis during the conceptional design
phase. Several lifting body concepts were
considered for the SSTO study. Among those, two
configurations with distinct shapes and sizes are
selected for presentations, herein. The first body is
cylindrical with an elliptic nose and the second is
delta-shaped with a flat bottom and a wider span
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(Figure 18). UBI is used to predict the flow field
over these lifting bodies at landing condition
(Mach---O.5 and a---6 degrees). The results indicate
that the later configuration is more acceptable since
it yields a higher lift coefficient (C1=0.6) as
compared to the cylindrical body (C1=0.3).

Finally a complete SSTO vehicle with wings and
winglets is considered. This vehicle is MSFC
modified version of one of the design concepts
originated from the Access-to-Space study
conducted at NASA Langley Research Center (12).

The GENIE tool was again used for the grid
generation about the various SSTO vehicles. The
volume grid of the complete SSTO wing-body
configuration consists of 4 blocks: block I is below
the wing, block 2 is above the wing and extends
from the body to the winglet, block 3 is also above
the wing and extends from the other side of the
winglet to farfield, and block 4 is whet could have
been the sting. This extra block behind the vehicle
base is created on purpose, for future study of
plume expansion. The four computational blocks
totaling 223,720 grid points are shown in Figure
19.

Figure 20 shows particle traces on the vehicle
surface, simulated at a Mach number of 0.5 and 12
degrees AOA. This solution is obtained using third-
order spatial accuracy. Simulations were also made
at Mach numbers of 0.9 and 1.5 at an AOA of five
degrees. Symmetry plane Mach number contours
for each of these cases are presented in Figures
21 and 22, respectively.

Conclusions

External flow over several launch vehicle
configurations are computed using a high-
resolution, finite-volume scheme. Reasonable
agreement was demonstrated relative to available
experimental data. The scheme is also used to
obtain aerodynamic information on different lifting
body concepts. The landing lift coefficients
resulting from the scheme will determine if a certain
lifting body meets the required criteria for landing.

The objective of computing the surface pressure
distributions over a launch vehicle configuration
has been met. These pressure distributions are
what determine the lifting and loading performance
of the vehicle. The numerical results obtained can

be used as a data base for other preliminary
conceptual designs.
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Figure 1. Early HLLV configuration

Figure 2. HLLV configuration
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Figure 3. UBI solution (Moo=1.46, (x=0°)
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Figure 5. Surface Forces (Moo=1.05, o_--6°)
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Figure 6. Numerical solution (Moo=1.15 & oc=0°)
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Figure 8. Numerical solution (Moo =1.15 & (x--0 °)
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Figure 12. Numerical solution (Moo :1.96 & o_=0°)
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Figure 9. Shadowgraph ( Moo =1.15 & _---0 °) Figure 13. Shadowgraph (Moo =1.96 & ec=O°)
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Figure 10. Numerical solution (Moo =1.46 & 0_--0°)
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Figure 14. Numerical solution (Moo:2.74 & o_=O°)

Figure 11. Shadowgraph (M. =1.46 & 0_=0°) Figure 15. Shadowgraph ( Moo =2.74 & a=0 °)



Mach=2.74 & A.O.A--(k_g .......

'11 ................................. _-_

Figure 16. Numerical solution (Moo=2.74, 0_---0°)

Figure 17. Shadowgraph (Moo=2.74, 0¢=0°)
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Figure 20 Subsonic simulation (Moo ----0,5,0_=12°)

Figure 21 Transonic simulation (Moo---0.9,c¢---50)

Figure 18. Landing simulation of lifting bodies

Figure 19. SSTO vehicle configuration
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Figure 22 Supersonic simulation (Moo=1.5, _=5 °)
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